Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(38): 35207-35218, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779969

RESUMO

The NS2B/NS3 protease is highly conserved among various proteases of the Zika virus, making it an important therapeutic target for developing broad-spectrum antiviral drugs. The NS2B/NS3 protease is a crucial enzyme in the replication cycle of Zika virus and plays a significant role in viral maturation and assembly. Inhibiting the activity of this protease can potentially prevent viral replication, making it an attractive target for developing therapies against Zika virus infection. This work screens 429 antiviral peptides in comparison with substrate peptide against the NS2B/NS3 of Zika virus using molecular docking and molecular dynamics (MD) simulation. Based on the docking screening, MD simulation conducted for the best four peptides including AVP0239, AVP0642, AVP0660, and AVP2044, could be effective against NS2B/NS3. These results were compared with the control substrate peptide. Further analysis indicates that AVP0642 and AVP2044 are the most promising candidates. The interaction analysis showed that the catalytic site residues including His51, Asp75, Ser135 and other non-catalytic residues such as Asp129, Asp83, and Asp79 contribute substantial interactions. Hydrogen bonds (41%) and hydrophobic interactions (33%) are observed as the prominent non-covalent interaction prompting the peptide-protein complex formation. Furthermore, the structure-activity relationship (SAR) illustrates that positively charged (Lys, Arg) residues in the peptides dominate the interactions. This study provides the basis for developing novel peptide-based protease inhibitors for Zika virus.

2.
PLoS One ; 18(9): e0291125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37713406

RESUMO

INTRODUCTION: The liver, the most important metabolic organ of the body, performs a wide variety of vital functions. Hepatic cell injury occurs by the activation of reactive oxygen species (ROS) that are generated by carbon tetrachloride (CCl4), xenobiotics, and other toxic substances through cytochrome P450-dependent steps resulting from the covalent bond formation with lipoproteins and nucleic acids. Observing the urgent state of hepatotoxic patients worldwide, different medicinal plants and their properties can be explored to combat such free radical damage to the liver. In vivo and in silico studies were designed and conducted to evaluate the antioxidant and hepatoprotective properties of Gynura procumbens in rats. MATERIALS AND METHODS: Gynura procumbens leaves were collected and extracted using 70% ethanol. The required chemicals CCl4, standard drug (silymarin), and blood serum analysis kits were stocked. The in vivo tests were performed in 140 healthy Wister albino rats of either sex under well-controlled parameters divided into 14 groups, strictly maintaining Institutional Animal Ethics Committee (IEAC) protocols. For the histopathology study, 10% buffered neutral formalin was used for organ preservation. Later the specimens were studied under a fluorescence microscope. In silico molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies were performed, and the results were analyzed statistically. RESULTS AND DISCUSSION: Gynura procumbens partially negate the deleterious effect of carbon tetrachloride on normal weight gain in rats. The elevated level of serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), creatinine, LDH, total cholesterol (TC), low-density lipoprotein (LDL), triglycerides (TG), malondialdehyde (MDA), deoxyribonucleic acid (DNA) fragmentation ranges, gamma-glutamyl transferase (γ-GT) in CCl4 treated groups were decreased by both standard drug silymarin and G. procumbens leaf extract. We have found significant & highly significant changes statistically for different doses, here p<0.05 & p<0.01, respectively. On the other hand, G. procumbens and silymarin displayed Statistically significant (p<0.05) and high significant(p<0.01) increased levels of HDL, CAT SOD (here p<0.05 & p<0.01 for different doses) when the treatment groups were compared with the disease control group. Because the therapeutic activity imparted by plants and drugs accelerates the movement of the disturbed pathophysiological state toward the healthy state. In the molecular docking analysis, G. procumbens phytoconstituents performed poorly against transforming growth factor-beta 1 (TGF-ß1) compared to the control drug silymarin. In contrast, 26 phytoconstituents scored better than the control bezafibrate against peroxisome proliferator-activated receptor alpha (PPAR-α). The top scoring compounds for both macromolecules were observed to form stable complexes in the molecular dynamics simulations. Flavonoids and phenolic compounds performed better than other constituents in providing hepatoprotective activity. It can, thus, be inferred that the extract of G. procumbens showed good hepatoprotective properties in rats.


Assuntos
Asteraceae , Doença Hepática Induzida por Substâncias e Drogas , Animais , Ratos , Ratos Wistar , Tetracloreto de Carbono/toxicidade , Simulação de Acoplamento Molecular , Alanina Transaminase , Glutamatos
3.
Materials (Basel) ; 16(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629955

RESUMO

The most affordable type of tablet is the immediately compressible tablet, which uses microcrystalline cellulose (MCC), a popular pharmaceutical excipient, as a filler or binder. To make it compatible with different active drugs and excipients, we tried to change some physical properties of the MCC. In the current study, we used a chelating agent to pretreat the waste cotton before pulping, bleaching, and finally, hydrochloric acid degradation with a concentration of 2N at 100 °C temperature for 20 min to prepare MCC. The prepared MCC was treated with different concentrations of sodium hydroxide at room temperature or at -20 °C followed by precipitation with hydrochloric acid or ethanol with complete washing with distilled water till neutralization. Evaluation of the degree of polymerization (DP) and FT-IR spectrum confirm the identity of the microcrystalline cellulose. The DP was found to be 216. The bulk density of the unmodified MCC was 0.21 while that of modified MCC varied from 0.253 to 0.594. The modified MCC powder showed good flow properties compared to the unmodified MCC as evaluated by the Hausner index, Carr's index and the angle of repose. The scanning electron microscopy (SEM) of the MCC revealed that the rod shape has been changed to an oval shape due to treatment with sodium hydroxide at -20 °C. The X-ray crystallographic (XRD) analysis indicated that the unmodified MCC and standard MCC showed the crystallinity index (CrI) value of 86.82% and 87.63%, respectively, while the value ranges from 80.18% to 60.7% among the modified MCC powder. The differences in properties of the MCC might be due to the variation of rearrangement of the cellulose chain among the MCC particles due to treatment with different concentrations of a base at different temperatures and precipitation environments. This has enabled us to prepare MCC with different properties which might be compatible with different drugs.

4.
Front Oncol ; 12: 899009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719997

RESUMO

Salvicine is a new diterpenoid quinone substance from a natural source, specifically in a Chinese herb. It has powerful growth-controlling abilities against a broad range of human cancer cells in both in vitro and in vivo environments. A significant inhibitory effect of salvicine on multidrug-resistant (MDR) cells has also been discovered. Several research studies have examined the activities of salvicine on topoisomerase II (Topo II) by inducing reactive oxygen species (ROS) signaling. As opposed to the well-known Topo II toxin etoposide, salvicine mostly decreases the catalytic activity with a negligible DNA breakage effect, as revealed by several enzymatic experiments. Interestingly, salvicine dramatically reduces lung metastatic formation in the MDA-MB-435 orthotopic lung cancer cell line. Recent investigations have established that salvicine is a new non-intercalative Topo II toxin by interacting with the ATPase domains, increasing DNA-Topo II interaction, and suppressing DNA relegation and ATP hydrolysis. In addition, investigations have revealed that salvicine-induced ROS play a critical role in the anticancer-mediated signaling pathway, involving Topo II suppression, DNA damage, overcoming multidrug resistance, and tumor cell adhesion suppression, among other things. In the current study, we demonstrate the role of salvicine in regulating the ROS signaling pathway and the DNA damage response (DDR) in suppressing the progression of cancer cells. We depict the mechanism of action of salvicine in suppressing the DNA-Topo II complex through ROS induction along with a brief discussion of the anticancer perspective of salvicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...